Tema 3. CONSTITUYENTES. FASES LIQUIDA Y GASEOSA

 

1 Fase líquida

1.1 Constituyentes, origen y localizacion

1.2 Estado energetico del agua del suelo

1.3 Metodos de medida de humedades y potenciales

1.4 Tipos de agua en el suelo

1.4.1 Desde el punto de vista físico

1.4.2 Desde el punto de vista agronómico

 

2 Fase gaseosa

2.1 Localización

2.2 Composición

2.3 Dinámica

2.3.1 Movimiento en masa

2.3.2 Difusión

 

3 Test

1 Fase líquida

 

1.1 Constituyentes, origen y localización

La fase líquida del suelo está constituida por el agua y las soluciones del suelo.

El agua procede de la atmósfera (lluvia, nieve, granizo, humedad atmosférica). Otras fuentes son infiltraciones laterales, capas freáticas etc...

Las soluciones del suelo proceden de la alteración de los minerales y de la materia orgánica.

El agua ejerce importantes acciones, tanto para la formación del suelo (interviene decisivamente en la meteorización física y química, y translocación de sustancias) como desde el punto de la fertilidad . Su importancia es tal que la popular sentencia "Donde no hay agua, no hay vida" podemos adaptarla en nuestro caso y decir que "Donde no hay agua, no hay suelos".

La fase líquida circula a través del espacio poroso, queda retenida en los huecos del suelo y está en constante competencia con la fase gaseosa. Los cambios climáticos estacionales, y concretamente las precipitaciones atmosféricas, hacen variar los porcentajes de cada fase en cada momento.

 

1.2 Estado energético

El concepto de estado energético es tan importante o más que la cantidad de agua del suelo, pues predice el comportamiento, ya que el movimiento del agua está regulado por su energía.

El agua en el suelo tiene varias energías y su medida se expresa en unidades de potencial (energía por unidad de masa). Los tipos de energía más importantes son: energía potencial (es la que tiene un cuerpo por su posición en un campo de fuerza), energía gravitacional (es la que tiene un cuerpo en función de su posición en el campo gravitacional), energía cinética (debida al movimiento), energía calorífica, energía química, energía atómica, energía eléctrica... La energía libre será la suma de todas estas energías.

E. libre = Ep + Eg + Ec + Ecal + Eq + Ea + Ee +..

Como resultado de esa energía un cuerpo se puede desplazar o queda en reposo. El grado de energía de una sustancia representa una medida de la tendencia al cambio de ese cuerpo. Las sustancias sufren cambios para liberar y disminuir su energía.

Al conjunto de fuerzas que retienen el agua del suelo se llama potencial de succión. Tiene un sentido negativo y es el responsable de las fuerzas de retención del agua dentro del suelo, es igual al potencial matricial más el osmótico. Frente a él está el potencial gravitacional que tiene un signo positivo y tiende a desplazar el agua a capas cada vez más profundas.

Cuando el potencial de succión es mayor que el potencial gravitacional, el agua queda retenida en los poros, y cuando el potencial de succión es menor que el gravitacional, el agua se desplaza hacia abajo.

Potencial matricial es debido a dos fuerzas, adsorción y capilaridad. La atracción por adsorción se origina como consecuencia de superficie de sólidos descompensados eléctricamente. Las moléculas del agua actúan como dipolos y son atraídas, por fuerzas electrostáticas, sobre la superficie de las partículas de los constituyentes del suelo.

Por otra parte en los microporos del suelo queda retenida el agua por fuerzas capilares.

Potencial osmótico es debido a las sales. Cuando se ponen en contacto dos líquidos de diferente concentración la disolución más concentrada atrae al agua para diluirse. Sólo es importante en el caso de suelos salinos.

 

1.3 Métodos de medida de humedades y potenciales

Para medir la humedad del suelo se efectúa por el método de la perdida de peso de una muestra húmeda tras eliminar el agua en estufa a 105ºC. Se van efectuando sucesivas pesadas hasta obtener valores constantes.

H= (Ph-Ps)/Ps x 100

donde, Ph= peso del suelo húmedo; Ps= peso del suelo seco.

Esa cantidad de agua que tiene el suelo, debe expresarse en función de la fuerza a que es retenida, ya que su comportamiento va a ser muy distinto dependiendo de las fuerzas de retención a que se encuentre sometida. Efectivamente si la mayor parte del agua está debilmente retenida esta se podrá mover y será asimilable para las plantas, mientras que si toda el agua está fuertemente retenida, carecerá de movilidad y será un agua inútil para las plantas.

Para medir el potencial de succión existen varios métodos para utilizar en el campo o en el laboratorio.

a) Métodos de campo. El más sencillo es el método del tensiómetro. Consiste en introducir en el suelo una bujía (porosa en su parte inferior, generalmente cerámica) llena de agua. La bujía está cerrada herméticamente y lleva acoplada un manómetro. Al succionar el suelo parte del agua de la bujía se produce en ella un vacío que se mide en el manómetro. Más que medir potenciales de succión refleja variaciones de este y sirve para controlar in situ la cantidad de agua retenida por el suelo y por tanto para el control de riego.

a) Métodos de laboratorio. El más universal es el método la placa de presión (o membrana de Richards).

Se somete a una muestra de suelo a una serie de presiones en una olla metálica conectada a un compresor. Cuando se iguala la presión que suministramos a la fuerza de succión, el agua sale del suelo.

Las medidas de fuerzas de retención del agua del suelo llegan hasta 16.000 gr/cm2. Para simplificar los datos se utilizan unidades de pF que representan los valores de los logaritmos decimales de las fuerzas de succión medidas en gr/cm2 (una fuerza de 1000gr/cm2 equivale a un pF de 3). También son frecuentes las medidas expresadas en atmósferas.

Así, las medidas de humedad del suelo se acompañan de las fuerzas de retención correspondientes, por ejemplo, 35% de humedad a un pF de 2,5 y un 20% a un pF de 4,2. El estudio de la humedad de un suelo es mucho más completo si calculamos la curva característica que relaciona gráficamente los valores de humedades y las fuerzas de retención correspondientes. Pero esta curva no es unívoca. Para una misma muestra de suelo la curva obtenida no es la misma en una muestra húmeda que se va desecando (desorción) con respecto a la que se obtiene si se parte de la muestra seca y la vamos humedeciendo (sorción). Este distinto comportamiento del suelo según se encuentre en un periodo de desecación o de humectación en relación con la fuerza con la que el agua está retenida, es el fenómeno de histéresis. Para un determinado contenido de humedad, cuando vamos desecando un suelo se necesita aplicar un pF mayor que cuando este se va humedeciendo. Por norma internacional las medidas de humedad y retenciones se calculan siempre desecando las muestras de suelo, previamente humedecidas.

 

1.4 Tipos de agua en el suelo

El agua del suelo puede clasificarse en una serie de términos diferentes, ya sea desde un punto de vista físico o desde el punto de vista agronómico.

 

1.4.1 Desde el punto de vista físico

Agua higroscópica. Absorbida directamente de la humedad atmosférica, forma una fina película que recubre a las partículas del suelo. No está sometida a movimiento, no es asimilable por las plantas (no absorbible). Está fuertemente retenida a fuerzas superiores a 31 atmósferas, que equivale a pF de 4,5.

Agua capilar. Contenida en los tubos capilares del suelo (figura). Dentro de ella distinguimos el agua capilar absorbible y la no absorbible.

i) Agua capilar no absorbible. Se introduce en los tubos capilares más pequeños <0.2 micras. Está muy fuertemente retenida y no es absorbible por las plantas; la fuerza de succión es de 31-15 atmósferas, que corresponde a pF de 4,5 a 4,2.

ii) Agua capilar absorbible. Es la que se encuentra en tubos capilares de 0.2-8 micras. Es un agua absorbible por las plantas. Es un agua útil para la vegetación, constituye la reserva durante los períodos secos. Está fuertemente absorbida; la fuerza de retención varia entre 15 a 1 atmósfera y se extrae a pF de 4.2 a 3.

Agua gravitacional. No está retenida en el suelo (figura).

Se habla de agua gravitacional de flujo lento y agua gravitacional de flujo rápido en función de su velocidad de circulación.

De flujo lento. La que circula por poros comprendidos entre 8 y 30 micras de diámetro, se admite que está retenida a un pF que varia desde 3 a un valor que varia entre 1,8 y 2,5. Tarda de 10 a 30 días en atravesar el suelo y en esos días es utilizable por las plantas.

De flujo rápido. La que circula por poros mayores de 30 micras. Es un agua que no queda retenida en el suelo y es eliminada al subsuelo, pudiendo alcanzar el nivel freático. Es un agua inútil, ya que cuando está presente en el suelo los poros se encuentran totalmente saturados de agua, el medio es asfixiante y las raíces de las plantas no la pueden tomar.

 

1.4.2 Desde el punto de vista agronómico

Capacidad máxima. Momento en el que todos los poros están saturados de agua. No existe fase gaseosa. La porosidad total del suelo es igual al volumen total de agua en el suelo.

Capacidad de retención. Cantidad máxima de agua que el suelo puede retener. Representa el almacenaje de agua del suelo. Se produce después de las precipitaciones atmosféricas cuando el agua gravitacional abandona el suelo; no obstante, durante ese período se producen pérdidas por evaporación, absorción de las plantas, etc. Por ello es muy difícil de medir. Hay una medida equivalente que se realiza en el laboratorio a un pF=3. Corresponde al agua higroscópica más la capilar, es decir el agua que ocupa los poros <8 micras.

Capacidad de campo. Surge este término para paliar la dificultad de medida de la capacidad de retención. Representa un concepto más practico, que trata de reflejar la cantidad de agua que puede tener un suelo cuando se pierde el agua gravitacional de flujo rápido, después de pasados unos dos dias de las lluvias (se habrá perdido algo de agua por evaporación). La fuerza de retención del agua variará para cada suelo, pero se admite generalmente una fuerza de succión de 1/3 de atmósfera o pF=2,5 y corresponde a poros <30 micras (para algunos suelos el pF de 1,8 es más representativo).

Punto de marchitamiento. Representa cuando el suelo se deseca a un nivel tal que el agua que queda está retenida con una fuerza de succión mayor que las de absorción de las raíces de las plantas. Es el agua que queda a una presión de 15 atmósferas o pF=4,2. El agua contenida corresponde al agua higroscópica más el agua capilar no absorbible.

En esta figura mostramos las relaciones entre el espacio poroso ocupado por el agua y el correspondiente al aire en cada uno de estos estados. En esta otra figura se reproducen los tipos de aguas presentes en un suelo al irse humedeciendo progresivamente.

Agua útil. Es el agua de flujo lento más la absorbible menos la no absorbible e higroscópica. Representa el agua en capacidad de campo menos la que hay en el punto de marchitamiento.

En esta figura mostramos los valores típicos para suelos con distintas granulometrías. En ella destacan hechos muy interesantes.

Suelos arenosos, muy baja capacidad de campo, pero casi toda su humedad es agua útil pues la cantidad de agua en punto de marchitamiento es muy pequeña.

Suelos arcillosos, muy alta capacidad de campo, pero con gran cantidad de agua inútil en punto de marchitamiento.

Suelos de granulometrías equilibradas, buenas características al compensarse los efectos de las arenas y de las arcillas.

 

 

2 Fase gaseosa

Es la menos estudiada, debido a que cambia fácilmente y es muy difícil de muestrear y estudiar. Sin embargo es una fase muy importante para la respiración de los organismos y responsable de las reacciones de oxidación.

 

2.1 Localización

Se sitúa en los poros del suelo, en ellos las fases líquida y gaseosa están en mutua competencia, variando sus contenidos a lo largo del año. Un suelo en capacidad máxima no contendrá fase gaseosa mientras que otro en punto de marchitamiento presentará valores muy altos. En condiciones ideales la fase atmosférica representa un 25%, otro 25% para el agua y un 50% para la fase sólida. Se admite que un porcentaje de aire del 10% es insuficiente.

 

2.2 Composición

Se supone que tiene una composición parecida a la del aire atmosférico, pero mucho menos constante.

   Aire atmosférico %  Aire suelo %
 Oxígeno  21  10-20
 Nitrógeno  78  78,5-80
 CO2  0,03  0,2-3
 Vapor de agua  variable  en saturación

Esta composición media del aire del suelo varía no solo con la profundidad del aire sino con los cambios estacionales. En los períodos de mayor actividad biológica (primavera y otoño), hay menos O2 y más CO2 (figura).

El aire del suelo muestra variaciones locales principalmente en los contenidos de O2 y CO2. En el suelo hay menos O2 que en el aire y más CO2. Esto se explica por todos los procesos que tienen lugar en el suelo y que implican el consumo de O2 y el desprendimiento de CO2, es decir aquellas reacciones en las que estén implicados todos los organismos del suelo: respiración de las plantas, actividad de microorganismos, procesos de mineralización y procesos de oxidación.

 

2.3 Dinámica

El aire del suelo está en continuo intercambio con el aire atmosférico y gracias a esta constante renovación la atmósfera del suelo no se vuelve irrespirable. Este movimiento puede realizarse por movimiento en masa o por difusión.

 

2.3.1 Movimiento en masa.

Se produce debido a variaciones de temperatura y de presión entre las distintas capas del suelo y entre este y la atmósfera. Estos gradientes hacen que entre y salga aire del suelo. El viento impulsa el aire dentro del suelo y succiona aire de la atmósfera. También la lluvia al penetrar dentro de los poros expulsa al aire del suelo.

 

2.3.2 Difusión

La superficie del suelo actúa como una membrana permeable que permite el paso de los gases. Se intercambian selectivamente los gases del suelo con los de la atmósfera para tratar de equilibrar su composición. Así, cuando en el suelo aumenta el CO2, se produce una difusión del CO2 a la atmósfera y si en el suelo disminuye el O2 se produce una difusión del O2 de la atmósfera al suelo. Es el factor principal en los intercambios de gases entre el suelo y el aire exterior y, por tanto, el causante principal de la renovación de la atmósfera del suelo.

La difusión depende de cada tipo de gas y de la porosidad del suelo.

La cantidad de gas transferido de un medio a otro se puede expresar como:

Q = -DA c/x

D= Coeficiente de difusión

A= superficie a través de la cual se produce la difusión

c= Incremento de concentración

x= Distancia entre la cual se produce la difusión.

El signo negativo de la difusión se debe a que en realidad representa una pérdida de un medio concentrado a otro menos concentrado.

 

Presentación | Programa | Test | Principio página